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INVESTIGATION OF SONIC BOOM GENERATED BY THIN,
NONLIFTING, RECTANGULAR WINGS
Sanford S. Davis

Ames Research Center

SUMMARY

A new theory is described for predicting sonic boom pressure signatures
emitted by nonlifting rectangular wings. Comparisons are made with previous
(Whitham) theory and with experimentally determined near field signatures.
Although both theories agree with experiment for low aspect ratio wings,
Whitham's theory seriously overpredicts signature length for high aspect ratio
wings. No experiments were conducted in the far field, but the two theories
predict nearly identical results in this region.

INTRODUCTION

The standard methods used to predict the sonic boom are based on a theory
developed by Whitham (refs. 1 and 2). Although the theory was originally
devised for slender, axisymmetric configurations, Whitham extended his theory
to include arbitrary configurations by using the methods of geometrical
acoustics (ref. 3). He later realized that the procedures developed for
slender, symmetrical bodies of revolution may be used intact for a nonsymmet-
rical configuration if the so-called equivalent body of revolution is intro-
duced. But if the equivalent body of revolution is not slender, Whitham's
theory as given in reference 2 is not strictly applicable. The extent to
which the pressure signatures calculated for a nonslender equivalent body
deviates from the experimentally determined signatures will be explored in
this report.

In order to predict sonic boom pressure signatures more accurately in the
nearfields and midfields for nonslender configurations, a new theory has been
developed. Although restricted to nonlifting, rectangular wings, this theory
predicts substantial differences in pressure signatures when compared with the
equivalent body theory. The purpose of this report is to evaluate signatures
predicted by both theories and to compare them with experimentally determined
signatures.

The rectangular wing represents a very interesting model configuration
because of the diversity of flows surrounding it. The wing tip Mach cones
divide the flow into three distinct regions: (1) the two-dimensional region,
{(2) the tip-cone region, and (3) the interaction region. In the two-
dimensional region, the flow is independent of the spanwise coordinate. The
flow field is exactly the same as that generated by a two-dimensional wing



with the same airfoil section as the rectangular wing. The tip-cone region
contains a three-dimensional flow, a small portion of which has conical symme-
try. In the interaction region the flow is fully three-dimensional. There-
fore, a theory that predicts the shock wave generated by a rectangular wing
includes elements of the theories of conical flows, two- and three-dimensional
flows, and the transition flows that separate these regions. It will be shown
that the new theory, called the uniform theory, more correctly describes the

flow in each of these regions.

The flow geometry and the uniform theory are reviewed briefly in the
following sections. The theory is developed for a parabolic arc airfoil sec-
tion, but the uniform theory can be applied to any wing with a biconvex
airfoil section.

LINEAR FLOW FIELD GEOMETRY

Consider the wing to be fixed in an (x,y,z) Cartesian coordinate system.
The mean plane of the wing occupies part of the x-y plane in the region
x >0, y>0. A supersonic stream flows in the direction of increasing x at
Mach number M. Since the flow is symmetric with respect to the plane z = 0,
only the region 2z > 0 will be considered.

The thickness distribution of the wing is denoted by t(x) and is given
by the following formula:

t(x) =0 all vy X<0 ‘
t(x) = 2m(x - x2/2d) 0<y<1
o<x<22d (1)
t(x) =0 y<0,y>1
t(x) = 0 all y x > 2d j

In equation (1) 7 represents the span of the wing, 2d is its chord, and
m is the slope of the airfoil section at the leading edge. Figure 1 is a
plan view of the wing.

A fundamental property of supersonic flows is the separation of the flow
field into disturbed and undisturbed regions. 1In linearized theory, the
boundary between these two regions is a characteristic surface (i.e., the wave
front). For the rectangular wing, the linearized wave front consists of the
following surface in z > 0.

1. The planar surface

where
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2. A portion of the tip cone at (0, 0, 0)
x-82A2+22=0 y<o0

3. A portion of the tip cone at (0, Z, 0)

x-8/y - 1)2+22=0 y>1

If the tip cones, given by 2 and 3 above, are extended to y > 0, y < Z,
three distinct disturbed regions are defined. These regions are denoted in
figure 1 by the numerals I, II, and III. 1In region I the flow is two-
dimensional, the same as for a wing of infinite span. In region II, inside
one or the other of the tip cones, the flow is dependent on only one tip cone.
Regions I and II alone represent the flow field for a semi-infinite wing.
Region III is the interaction region. In this region the flow field is
influenced by both tip cones. Region III represents the typical flow field
pattern at large distances from a finite wing.

The general appearance of these regions, at various distances from the
wing, is also shown in figure 1. In each of the sketches labeled nearfield,
midfield, and farfield, the wave front is shown as it would appear when inter-
sected by a plane at a constant value of x. In the nearfield sketch, which
represents a distance downstream of one or two spans, regions I, II, and III
are about the same size. In the midfield, at a few spans downstream,
regions I and II are reduced at the expense of region III. Many spans down-
stream, the characteristic farfield pattern emerges. Region I becomes very
small, region II becomes a crescent shaped area with a thickness the order of
the span, while region III dominates the flow.

DESCRIPTION OF THE UNIFORM THEORY

The basis of the uniform theory is Whitham's hypothesis (as developed
and applied in refs. 2 and 3), which states that linear theory gives a correct
first approximation to variations of the physical quantities along the lin-
earized (free-stream) characteristics, but the location of these linearized
characteristics is in error. In order to apply Whitham's hypothesis to the
rectangular wing, a better approximation to linearized theory must be obtained
than the one afforded by the equivalent body method. Unfortunately, a better
approximation cannot be expressed in the form of the Whitham F-function. Once
this form of solution is abandoned, Whitham's simple and elegant results can-
not be duplicated. But there is no reason why an improved form of the linear
solution could not be used as the basis of a characteristic correction, and
this in fact is the crux of the uniform theory. This theory will be
described briefly in the following paragraphs.

An expression for the perturbation velocity potential due to the presence
of a nonlifting rectangular wing in an otherwise undisturbed stream of Mach
number M is



m(l - /d)dx,d
d>=-'!f ( X, )Xl}’l )
A /?X - x1)2 - B2(y - y1)2? - 8222

In this expression m(l - x;/d) represents the streamwise slope distribution
of the parabolic airfoil, V is the free-stream velocity, and A 1is the area
in the plane of the wing bounded by the Mach forecone from the field point

(x,y,z), and the edges of the wing.

In the region z > 0, 0 <y < 17 a new set of coordinates based on the
family of planar characteristics will be introduced. Let

X=€1+8r1
Yy =P,
Z =1

If the location of the point P; in figure 2 is expressed in terms of
(8,5 T15 pl), the potential can be written as

5= - % ffm(l - Xl/d)dxldyl (3)
A X1

X; = (&1 - x1)2 + 2Br1(8; - x1) - B2(p1 - ¥1)?

In the region near the wave front, £, is always much smaller than 7r; (see
fig. 2).. Since only the region near the front is of interest, equation (3)
may be simplified by neglecting the first term in the expression for X;. If
this quadratic term in (&; - x;) is neglected, the resulting expression for ¢
is valid for small values of ¢&,/r;. The simplified form of equation (3) is

1 - x;/d)dx,d
¢~¢=-¥ff L (4
A /éerl(sl - x1) - B%(p1 - y1)?

where A now represents the area in the plane of the wing bounded by

28r1(8) - x1) - B2(p; - y)2 =0

and the wing edges. Note that in this approximation the intersection of the
plane of the wing and the Mach forecone is represented by an approximating
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parabola instead of a hyperbola (The F-function approach, by neglecting the
quadratic term B2 P, - Vv }2, would represent this approximation by a straight
line parallel to the leadlng edge.) Equation (4) represents the uniformly
valid approximation to the linear perturbation potential in the region z > 0,
0 <y <1,

Another set of coordinates is chosen in the region 2z > 0, y < 0. (The
region z > 0, y > Z will not be examined since the plane y = 1/2
represents a plane of symmetry.)

x=§2+Br2

y = T cos p,

z = rp sin p,

If the location of the point P, in figure 2 is expressed in terms of (&,,
r,, Po), the potential in this coordinate system is

1 - x,/d)dx,d
¥ff m( xl/)x Yy )

Xp = (&, - x1)2 + 28r3(E, - x3 + By, cos p,) - 62y12

Equation (5) can be approximated in the region where g /r2 is small if the
term (&, - x1)2 in X, 1is neglected. This approx1mate potential is written

5~ ¢ = - !L.’:’. m(l - x3/d)dx1dy; 6)
K
A V2Bry(E, - x3 + By, cos p,) - Bzylz

where A represents the area in the plane of the wing bounded by

2Br3(&, - X1 + Byy cos p,) - B2y;2 =0

and the wing edges. As mentioned above, this approximation results in a

parabolic forecone intersection. (It does not give as crude an agproximation
as the F-function in which X, is linearized by neglecting 8%y;%.) Equa-

tion (6) represents the uniformly valid approximation to the potential in the

region 2z > 0, y < 0. It can be shown that this form of ¢ 1is a uniformly

za}id asgmptotic representation to ¢ with respect to the parameter p, as
2/r2 > U.



The choice of new coordinates in equations (4) and (6) is not arbitrary,
but is closely related to the rays and wave fronts of geometrical acoustics.
In this context, the x-axis plays the role of time and the y-z plane repre-
sents the space; r; and r, represent distance along a '"ray'"; p; and py are
ray labelling parameters; and &, and £, are ''phase variables." Flow past a
rectangular wing is analogous in many respects to diffraction of a pulse by a
plane wall, and "shadow regions' or '"reflected regions' may be defined in the
y-z plane (e.g., region I is a reflected zone, region II is a shadow region
and the shadow boundary is the ray p; = 0 or p, = 7/2). This analogy has
been very useful in determining the expressions (4) and (6).

The approximations (4) and (6) may be integrated directly, resulting in
the following expressions for the axial perturbation velocity:

1. In the region z > 0, 0 <y < Z:

) £ - - Bp12A0 B(Z-p)2A7] )
u _ -m _ =21 ~ 1 _ 1 - 1 . 1
V-7 [( d)(" tan = Ao-tan © Az)- Fqo 3dr,
1/2
Ao = Re _251—21.1 - 1 (7)
8p, (
1/2
2.1
AZ = Re .___l_l—z__ 1
8(Z - p;) )

2. In the region z > 0, y < 0:

- 13 Br, cos? @ - -1 ‘
%:% [(1-71&__22(1___) (tan”! B, - tan™' By)
Br, cos? 6B, B(r, cos 6 + )2
* 2d } 7T,d Z
2e 1/2 ¢ (8)
B = Re (—22
Br, cos? @
1
(2g5r2/8) - 2,1 cos 6 - 12 /2
Bz = Re
(rp cos 8 + 1)2 J

where 6 = T - pj.
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Note that equations (7) include a region where both Ay and Az vanish.
The perturbation velocity in this region is the same that would exist for a
two-dimensional flow in the x-z plane. As A, and A7 become real, the
tip cones modify this two-dimensional region. At very large values of r;, if
g1 # 0, the solution reduces to the form that would be obtained by equivalent
body theory. Likewise the form given by equations (8) reduces to the equiva-

lent body solution as 1y + <. (See the appendix for the equivalent body
corresponding to this wing.)

Returning to Whitham's hypothesis, the linearized solution given by
equations (7) and (8) must be corrected to account for cumulative nonlinear
effects. The correction procedure is to redefine the lines €1 = X - Bm and
€, = x - Brp to be the next approximations to the exact characteristic lines.

The slope of the next higher-order characteristic lines in the planes
pi = constant is

dx g, r+ DM* ulEi,Tispi) Mz[é u(&y,T4,P;) uri(Ei,ri,Pi)}

dri 282 Vv A * \"
2 Up:\2 Uy
u i u ri
+ terms of order I:(V) s <—V—> s (V T) s etc.] (9)
where i =1 for z >0, 0<y<17 and i=2 for z >0, y < 0. In equa-
tion (9) ur. /V represents the velocity in the direction of increasing rj
and y = ¢p is the ratio of specific heats. Since only a first-order

characterlstlc correction is required, only the linear terms in the exact
expression for the characteristics have been included in equation (9). In
addition, the term B(u/V) + (ur;/V) may be neglected because the curvature of
the characteristic line is very small. (For planar families of characteristics
B(u/v) + (uri/V) is identically zero.)

Equation (9) may be integrated, and, in analogy with the procedure
developed by Whitham, the corrected characteristics may be expressed as

x = Brj - G(&j,Ti,pi) *+ &;
I Ti
Geomyopy) = - LD [0 8 oy eppar (10)

The function G(&;,ri,p;) is given explicitly as:

1. In the region z > 0, 0 <y <1



2
_ vy + 1 Mim €1 -1 Bpl Ao -
G(El,rl,pl) - L+ HM'm [@.— T frl - r; tan 1 Ag + 2%, - Ty tan 1 AZ

2827
B(Z-p)%A7\ Bp,2 B} B(Z - py)? i}
+ 251 - d (Ao - tan 1 Ag) - g (Az - tan 1 Az):l

2. In the region z > 0, y < 0

1)M4m €y - 28, -1,-1
G(E,,Trqp,0) = LLFLMm Q-—— ro tan~1 By + roBg - ——2——— tan” 1B
(52 2,0) 282’" d 2 (o] 250 8 cos2 8 an o

r, cos 8 +1 2g,
Bz +
cos © B cos? b

-TIy tan_l BZ -

_1[B cos 8(r, cos & + 1) Ty cos 6 + 1
*tan 35E, - Bl cos & Bz{f - B d Bz

2 2

72 -1 (r2 cos O + Z)BZ Br,% cos? o -1
+ d tan Z - 4d ta.n BO

Br,Z cos? o Br.2 cos? o Br,2 cos? §

2 2 3 _ 2 " -1 -1

M T Bo * — g Bo 7d Bo” tan © B,

Br,2 cos? © - B212 cos 8(ry cos 6 + 1) "
* 4d tan ° By + 8d(£2 - BL cos 8) Z

£,(28, - BL cos 8)(r, cos 6 + 1)
4d cos 6(&s - BL cos 6)

By

B2 cos 0(r, cos 6 + 1)3 3
8d(g - BL cos @) Bz

Br22 cos? @ X _1 [B cos 8(r, cos 8 + 1)
* ag Bo tan 2E, - BL cos & BL

Equations (7), with £&; given by equation (10) represent the uniformly valid
first-order expression for the velocity field in the region =z > 0, 0 <y < Z.
Equations (8), with &, given by equation (10), represent the analogous
result for z > 0, y < 0.

8



ST ImE

The solutions represented by equations (7) and (10, i=1) or equations (8)
and (10, i=2) are multivalued, and thus do not represent a physically plausi-
ble situation. In order to eliminate the multivalues, a shock wave must be
introduced into the flow field. The shock wave separates the regions of dis-
turbed and undisturbed flow, and is located by the rule that the direction of
the shock wave bisects the angle between the characteristics which meet at a

point.

In the undisturbed flow, the slope of the characteristic is the
free-stream wave slope B. In the disturbed flow, the characteristic direc-
tion to be used is associated with the family that carries local discontinu-
ities in the perturbation quantities. In the case of the shock produced by a
rectangular wing, more than one such family exists. For example, figure 3
shows the distorted characteristics in the plane of symmetry of the wing. (In
the plane of symmetry (p; = 1/2) both tip cones have the same trace.) In the
region ahead of the trace of the distorted tip cone characteristic, the family
of distorted planar characteristics is used to calculate the shock direction.
But within the influence domain of the tip cone, the family associated with
the tip cone trace is used to determine the shock-wave slope.

Each family of characteristics may be expressed as

EO = &; - f(ri)

where &, identifies the family to be used in the bisection rule, and f(r;)
is a function appropriate to each family. 1In figure 3, where i = 1, the two
families used are (1) &, = &), £(r1) = 0 and (2) &, = &; - B(2/2)2/2r,,
f(ry) = 8(2/2)?%/2r;.

In terms of the parameter §&,, the corrected characteristics can be
expressed as

x = Brj - G[gy + £(ri),7i] + & + £(73) (11)

The bisection rule, when applied to (11), becomes
)

1 56, of
Z [(B) T < T By Bri)]

Slope of shock

n—

(12)
Slope of shock = B - %.§¥%.+ %_ég%
J
If the position of the shock wave is given by
Xgh = Brj - H(ry) (13)



then the slope of the shock dxgp/dr;  is

dxgp dH(r,)

dri B - drj (14)
or

dH 1 3G 1 of

drj - f'ari - E"Bri (15)

Note that all partial derivatives in equation (15) are to be taken with g/
held constant.

From equations (11) and (13), H may be expressed as
H=G-¢ - f (16)

Equations (15) and (16) represent a first-order, nonlinear, ordinary differ-
ential equation for £ = as a function of ;. The functional form of G is
so complicated that a numerical approach must be used to solve this equation.

In order to solve equations (15) and (16) a modification of the familiar

Euler-Cauchy forward integration procedure was used. In terms of small,
finite increments the differential system can be written as:

AH _ 193G 1 5f (17a)

Ari 2 97§ 2 9r;

AH = AG - AE, - Af (17b)

If starting values £, and r;, are chosen, and an increment Ari is given,
equation (17a) shows that H changes by an amount

Ar; (18a)

When rj = ri, + Arj,§, must change to £ . + Ago. Equation (17b) reflects
these increments as a change in AH by an amount

MH = G(Eyy *+ BEgsTig * ATy) - G(Eoo,rio) - AEO - f(rjq * BAri) + f(r3,)
(18b)

10



Fowr

Since H is the same in both equations (18a) and (18b),
2%9r; 2 orj Arj = G(&5p *+ B8psTjp * ATj) - G(£50.Ti0) - 8%
- f(rio + Arj) + £(ry,) (19)

Equation (19) is a nonlinear algebraic equation for determining the unknown
increment Ag,. Once Af, 1is found, a new starting point

€o = &pp * BEG5Ti = Ty, t+ ATy

is found. The procedure is continued in this manner until the shock wave
intersects a new family of characteristics. At this point £, is redefined,
the starting value of r, is obtained from the preceding shock wave calcula-
tion, and the numerical integration can be restarted.

A slight difficulty in the procedure appears in the region z > 0, y < 0.
For the starting values, £; = 0, T2 = 0 when substituted into the governing
formulas, gives a result which is the indeterminate from 0/0. This problem
is easily surmounted by matching to a conical flow solution near 7T, = 0.

Once the uniformly wvalid velocity field (with shock waves) has been
obtained, the pressure rise at any point in the flow is calculated from the
expression

TEST PROCEDURES AND RESULTS

The general arrangement of the wing model is shown in figure 4. The
symmetric airfoil section is a portion of a parabolic arc with a thickness
distribution given by t = 0.250 (x - 0.197 x2) cm where t is the total
thickness of the wing and x is a streamwise variable. Wings were fabricated
with spans of 2.54 cm (Z/d=1), 10.16 cm (Z/d = 4) and 15.24 cm (1Z/d = 6).

The, experiments were conducted in the Ames 2- by 2-Foot Transonic Wind
Tunnel at a Mach number of 1.40, a total pressure of 67.5 kN/m? and a total
temperature 296° K. The arrangement of the model in the wind tunnel is shown
in figure 5. The wing is supported in the test section by a tapered, conical
sting faired into the wing's axis of symmetry. In order to minimize its
effect on the front shock wave, the sting was fastened to the aft portion of
the wing only. The 58.5 cm long sting assembly was secured to a linear
actuator. The actuator had a continuously variable 15.24 cm streamwise motion,

11



and could be preset to any streamwise station prior to a test run. During a
run, the x (streamwise) position of the wing was monitored by a calibrated
potentiometer that was coupled to the 15.24 cm motion.

The shock-wave signature was measured with a slender 1° semiangle probe.
The probe was offset 10.2 cm from the test section wall in order to exclude
the effect of the wall's boundary layer from the measurements. On a plane
inclined at 45° to the flow direction, four holes of 0.1024 cm diameter were
drilled 7.62 cm from the probe tip. The pressures from this probe were
measured relative to the free-stream static pressure by means of a calibrated

pressure transducer.

Before each run, the wing was set in the test section so that the shock
wave would be slightly behind the probe orifice. During the run the model was
moved upstream in discrete steps by using the 15.24 cm motion of the actuator.
At each step, the overpressure and distance moved was recorded. In this
manner the entire shock-wave signature was obtained.

The results of the test program are summarized in figures 6 through 8.
In each case the signatures are shown as normalized overpressures as a func-
tion of a horizontal scale measured from the position of the linearized lead-
ing Mach line. In all the figures, linear dimensions have been scaled with
respect to the distance from the leading edge to the point of maximum
thickness (i.e., with respect to 2.54 cm).

Figure 6 shows the shock-wave signatures for each of the three wings
tested at varying distances below the wing (z direction). The wings having
values of 7/d of 4 and 6 show strong two-dimensional shock waves in the near
field, whilé the Z/d = 1 wing shows a relatively weaker three-dimensional
type of shock wave signature at all distances. The relative change in peak
shock overpressure with distance is greatest for the wings with Z/d of 4 and
6. This effect is attributed to the sharp pressure relief associated with the
wing tip cones. This behavior is indicated in figure 7(a) which shows the
shock signature for the wing 7/d = 4 and 2z/d = 2.2, but at different span-
wise stations. The shock strength below the wing tip (span station y/d=0.0)
is about half the value at the centerline (span station y/d = 2.0) because
the centerline station is in a two-dimensional flow field (as far as the shock
strength is concerned), while the tip station is located within the dependence
domain of the tip cone at y/d = 0.0. This ratio of 2:1 in peak overpressure
is also predicted by the linearized theory, but (of course) the magnitudes
obtained from linear theory are incorrect. At larger distances, the effect of
spanwise variation is reduced. This lateral smoothing of the pressure field
is due to the net cancelling effect of both wing tip cones on the two-
dimensional field. This effect is shown in figure 7(b).

The influence of roll angle on the measured pressure signatures is shown
in figure 8 for each of the three wings. In each case, the roll angle is
defined by a rotation of the plane of the wing relative to the original
horizontal plane about the axis of symmetry of the wing. (This axis is also
the axis of the sting.) Distance from the axis of symmetry is denoted by R/d,
where

12
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For the 7/d = 1 wing, the signature is almost axisymmetric at R/d = 16.0
because at this distance the dominant effect on the sonic boom for this low
aspect ratio wing is an axial source distribution. For the other wings large
differences in meridional shock strengths and locations are apparent.

COMPARISON OF MEASUREMENTS AND THEORY

Predicted signatures of the uniform theory and equivalent body of
revolution theory are compared with experimental signatures in figures 9 to 11.
Details of the equivalent body theory for this configuration are described in
the appendix. The signatures in the plane of symmetry below the wing for
various length ratios, 1/d, are compared in figure 9. These signatures indi-
cate that for short wings (i.e., Z/d = 1, fig. 9(a)) both the uniform theory
and the equivalent body theory predict the experimental results quite well at
all the distance ratios shown. However, the signatures corresponding to
longer wings (i.e., figs.!9(b) and 9(c)) indicate that while the equivalent
body theory gives reasonable values for the peak overpressure, it substan-
tially overestimates the signature length. On the other hand, with one excep-
tion, the uniform theory gives a better prediction for both the peak pressure
and signature length for all values of ./d. The case z/d =4 in fig-
ure 9(b) is an exception because the tip-cone interaction has not been pre-
dicted exactly. This local defect has little effect on the overpressure at
greater distances. The experimental signatures for z/d = 8.0 and 16.0
(fig. 9(c)) are probably less accurate than the others because the larger wing
vibrated quite visibly during the test. These vibrations would tend to dis-
tort the signatures at the larger distance ratios. An indication of this
distortion is the rapid expansion behind the shock wave for the case
z/d = 16.0 as compared to that for z/d = 8.0. All previous experimental and
theoretical results indicate that the slope of the curve in the expansion
region decreases, rather than increases, in a regularly decaying shock wave
signature.

In the midfield and farfield regions no experimental results are
available, but a comparison of the two theories in their prediction of the
peak overpressures is shown in figure 10. For I/d = 1, the agreement is
good at all distances. For 7/d = 4 and 1/d = 6, the two theories lose mutual
agreement at short distances. The nearfield experimental peak overpressures
are also shown in figure 10, and these show that except for the one point
corresponding to the 1/d = 6 wing, good agreement between the uniform theory
and experiment is achieved.

An important property of the decay curves shown in figure 10 is the

behavior of the uniform theory curve for the higher span wings. These curves
approach the equivalent body theory from below and show that some benefit may
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be obtained by using this 'non F-function' behavior in the midfield region.
Further work on this point is necessary before any conclusions concerning the
benefits of an unswept wing may be reached.

So far only the sonic boom overpressures under the wing have been
compared. Figure 11 shows how the overpressures compare in the region to the
side of the wing at 2z/d = 16.0. At this angle and distance, the uniform
theory and the equivalent body theory predict similar signature shapes with
reasonable agreement between theory and experiment.

CONCLUSIONS

A new theory for predicting sonic boom pressure signatures produced by
nonlifting rectangular wings has been described and compared with the equiva-
lent body of revolution theory and with a series of experimentally determined
nearfield signatures. For low aspect ratio wings (i.e., less than one-half),
both theories are in excellent agreement with experiment. For higher aspect
ratio wings, with signatures taken in the vertical plane of symmetry, the
equivalent body theory seriously overpredicts signature lengths. However, it
does predict peak overpressure with accuracy comparable to the new theory.
With signatures taken in the horizontal plane of the wing, the two theories
are in excellent mutual agreement, and collectively are in reasonable agree-
ment with experiment. Although no experiments were conducted in the farfield,
the two theories give essentially identical predictions in this region.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Sept. 2, 1971
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APPENDIX

EQUIVALENT BODY METHOD

The equivalent body for a rectangular wing is different for each
meridional angle 6. The proper form of the equivalent body can be obtained
from equation (6) for the perturbation velocity potential If the radical in
equation (6) is linearized, the potential may be expressed as

V28T, VEp - X3 - By; cos 6

where A represents the area in the plane of the wing bounded by
€, - X3 - By; cos 8 = 0 and the wing boundary. An oblique coordinate system

(A1)

51 =71

x] *+ By, cos 6

} | (A2)

t) =
In terms of (s;,t;) as variables of

is introduced into equation (Al)

integration, the potential becomes
v > dt,
p = - —m— —_— &pnl———+( )cw ﬂ (A3)
TV2B8To o YEr - Ty wing
s] on

where the integral in the square bracket is taken over all values of

the wing.
From reference 2, the approximate perturbation velocity potential for a

slender body of revolution may be expressed as
€2
(A4)

\'} S'(ty)
= - —L dty ——1
2nv2B8rso o VEz - t1

where S(t;) is the cross-sectional area of the body at station t;, and
. A comparison of equa-

primes indicate differentiation with respect to t;
tions (A3) and (A4) shows that the disturbance field produced by the rectan-
gular wing is the same as would exist for a slender body of revolution with a

cross-sectional area distribution of

15



1 t) Bsy
ES'Ctl) =f dslm[l i i ( 3 ) cos 6] (A5)
wing

Equation (A5) is valid for all values of t; less than 2d (i.e., excluding
the influence domain of the trailing edge) and S'(t;) has the following
representations in 0 < t; < 2d.

( t;/B cos 6 t, Bs,
2f dslm[l—7+(d)cose] ty < Bl cos ©
o
S'(ty) = < (A6)
Z t]_ 651
2 f dsim [1 -3 +(T)COS e] ty > BZ cos ©
| "o

Equation (A6) can be integrated to give an explicit formula for the
cross-sectional area distribution of the equivalent slender body of revolution.

( 2 3

mZd ! 1 tl) t z
7 [(T)"E(T g < Bgcoss
B = cos 6

d

t t t
S(ty) = 4 mZd [27}+3%cos e—al——(Tl) (A7)
A /A 2 t Z
1 1

\-BECOSG—E(B'&'COSG)] —d—>B'c-1'COSG

The radius distribution is given by §It1) = (1/7)vYS(ty).

Figure 12 shows a sampling of typical equivalent bodies of revolution
for the wing 7/d = 4. At © = 0° and 6 = 45° the equivalent bodies are
slender, but at 6 = 90° the equivalent body degenerates to a blunt forebody.
Once these equivalent bodies have been found, the sonic boom corresponding to
each of them may be found in a straightforward manner by following the
procedures given in reference 2.
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4.0

Uniform theory
——— Equivalent body theory
— O Experimental data —

N

rd

o
© 6

8.0 16.0

05—

Signature length/d

(b) Z/a=4

Figure 9.— Continued.

33

- -



ve

30 =

z/d=2.2

4.0

Uniform theory
——— Equivalent body theory
O  Experimental data

3
Signature length/d

(©) 1/d=6

Figure 9.— Continued.




Uniform theory
— —— Equivalent body theory
O Experimental data

5 z/d=8.0
10— Mo
| ~
l ~
~
| N
I RN
.05 — I
{
l
| 0]
oL oW o M|
Ap
Po
16.0
15— —
10—
.05 —
L
04

Signature length/d

(c) 7/d = 6 — Concluded.

Figure 9.— Concluded.

35



9¢

T T T TTT]
/
/

=125
=14

=3
'

FTTH

>
)
|

Ol

.00l

Uniform theory
— — — Equivalent body theory
o Experimental data

N

I [

z/d
(@) z/d=1

100

1000

Figure 10.— Decay of peak pressure rise with distance below wing.



LE

Ol

.OOI|

N m =.125
M =14
N
— Uniform theory
- — — — Equivalent body theory
O Experimental data
| L 1 111l [ L L1111l | L L 11111

10 100
z/d

(b) 7/d =4

Figure 10.— Continued.

1000



8¢

.0l

.00l

N

N\ m =125
M =14

’_

N
N

— N

— Uniform theory

- — — = Equivalent body theory

O Experimental data
| 11111l l {1 11111 | L L {111l

z/d

() 1/d=6

Figure 10.— Concluded.

1000



6¢

Uniform theory
——=— Equivalent body theory
O  Experimental data

1/d=1.0 .
10— _ _ 4.0 _ B 6.0
Ap
Peo
05— - - — -
520 D o 070} GO
O \ ° - N . o ° °°
ol oL 1l | On0N¢ L o-Q 1l | gy L ~C !
3 2 | o 3 2 [ 0 3 TR |

Signature length/d

Figure 11.— Overpressure signatures measured at R/d = 16.0 for a roll angle about the axis of symmetry of 90°, M = 1.4,



Q.||

a|ol

Q.i:Ul

40

1/d =40

Figure 12.— Equivalent body of revolution for the rectangular wing.

NASA-Langley, 1971 — 2

3 m=0.125
‘ B = 6=0°
Py l{: M=1.4
A
0 -e/‘ — {))
S
45°
2 155°
J
0 / -
N o 90°
2+
.I B \
0 — /
i | 1 1 | 1 |
0] .8 .2 1.6 20
t/d

A-4109



NATIONAL AERONAUTICS AND SPACE ADMISTRATION
WASHINGTON, D.C. 20546
POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

FIRST CLASS MAIL

017 001 €C1 U 02 711124 S00903DS
DEPT DF THE AIR FORCE

AF WEAPONS LAB {AFSC)

TECH LIBRARY/WLOL/

ATTN: E LOU BOWMAN, CHIEF
KIRTLAND AFB NM 87117

. If Undeliverable ( Section 158
POSTMASTER: Postal Manual) Do Not Return

“The aeronantical and space activities of the United States shall be
conducted so as 10 contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Fechnology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
W ashington, D.C. 20546



